Multiple Linear Regression

Creating a Multiple linear regression model for estimating
CO2 emission from a car model using independent
variables like Engine size, cylinder, fuel consumption of a
car.
import matplotlib.pyplot as plt
import pandas as pd
import pylab as pl
import numpy as np
%matplotlib inline
df = pd.read_csv("FuelConsumptionCo2.csv")
#df.head()
cdf = df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB','CO2EMISSIONS']]
#cdf.head(9)
# Plotting
plt.scatter(cdf.ENGINESIZE, cdf.CO2EMISSIONS, color = 'blue')
plt.xlabel('Engine Size')
plt.ylabel('Emissions')
#plt.show()
# Creating train and test dataset
msk = np.random.rand(len(df)) < 0.8
train = cdf[msk]
test = cdf[~msk]
# train data distribution
plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue')
plt.xlabel("Engine size")
plt.ylabel("Emission")
#plt.show()
#### MULTIPLE REGRESSION MODEL ####
from sklearn import linear_model
regr = linear_model.LinearRegression()
x = np.asanyarray(train[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB']])
y = np.asanyarray(train[['CO2EMISSIONS']])
regr.fit (x, y)
# The coefficients
#print ('Coefficients: ', regr.coef_)
# Prediction
y_hat= regr.predict(test[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB']])
x = np.asanyarray(test[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB']])
y = np.asanyarray(test[['CO2EMISSIONS']])
#print("Residual sum of squares: %.2f" % np.mean((y_hat - y) ** 2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % regr.score(x, y))

Comments

Popular posts from this blog

Simple Linear Regression

IRIS ML Project